Twisted homology of symmetric groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy Groups and Twisted Homology of Arrangements

Recent work of M. Yoshinaga [13] shows that in some instances certain higher homotopy groups of arrangements map onto non-resonant homology. This is in contrast to the usual Hurewicz map to untwisted homology, which is always the zero homomorphism in degree greater than one. In this work we examine this dichotomy, generalizing both results.

متن کامل

Homology of some Artin and twisted Artin Groups

We begin the paper with a simple formula for the second integral homology of a range of Artin groups. The formula is derived from a polytopal classifying space. We then introduce the notion of a twisted Artin group and obtain polytopal classifying spaces for a range of such groups. We demonstrate that these explicitly constructed spaces can be implemented on a computer and used in homological c...

متن کامل

On the Twisted K-Homology of Simple Lie Groups

We prove that the twisted K-homology of a simply connected simple Lie group G of rank n is an exterior algebra on n − 1 generators tensor a cyclic group. We give a detailed description of the order of this cyclic group in terms of the dimensions of irreducible representations of G and show that the congruences determining this cyclic order lift along the twisted index map to relations in the tw...

متن کامل

TWISTED K - HOMOLOGY THEORY , TWISTED Ext - THEORY

These are notes on twisted K-homology theory and twisted Ext-theory from the C *-algebra viewpoint, part of a series of talks on " C *-algebras, noncommutative geometry and K-theory " , primarily for physicists.

متن کامل

Homology Operations in Symmetric Homology

Symmetric homology of a unital algebra A over a commutative ground ring k has been defined using derived functors and the symmetric bar construction of Fiedorowicz, in an analogous way as cyclic, dihedral or quaternionic homology has been defined. In this paper, it is found that the HS∗(A) admits Dyer-Lashoff homology operations, and indeed, there is a Pontryagin product structure making HS∗(A)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2002

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-02-06763-1